Abstract

Several methods for timely detection of emerging clusters of diseases have recently been proposed. We focus our attention on one of the most popular types of method; a scan statistic. Different ways of constructing space-time scan statistics based on surveillance theory are presented. We bridge the ideas from space-time disease surveillance, public health surveillance and industrial quality control and show that previously suggested space-time scan statistics methods can be fitted into a general CUSUM framework. Crucial differences between the methods studied are due to different assumptions about the spatial process. An example is the specification of the spatial regions of interest for a possible cluster, another is the increased rate to be detected within a cluster. We evaluate the detection ability of the methods considering the possibility of a cluster emerging at any time during the surveillance period. The methods are applied to the detection of an increased incidence of Tularemia in Sweden.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.