Abstract
BackgroundAlthough syndromic surveillance is increasingly used to detect unusual illness, there is a debate whether it is useful for detecting local outbreaks. We evaluated whether syndromic surveillance detects local outbreaks of lower-respiratory infections (LRIs) without swamping true signals by false alarms.Methods and FindingsUsing retrospective hospitalization data, we simulated prospective surveillance for LRI-elevations. Between 1999–2006, a total of 290762 LRIs were included by date of hospitalization and patients place of residence (>80% coverage, 16 million population). Two large outbreaks of Legionnaires disease in the Netherlands were used as positive controls to test whether these outbreaks could have been detected as local LRI elevations. We used a space-time permutation scan statistic to detect LRI clusters. We evaluated how many LRI-clusters were detected in 1999–2006 and assessed likely causes for the cluster-signals by looking for significantly higher proportions of specific hospital discharge diagnoses (e.g. Legionnaires disease) and overlap with regional influenza elevations. We also evaluated whether the number of space-time signals can be reduced by restricting the scan statistic in space or time. In 1999–2006 the scan-statistic detected 35 local LRI clusters, representing on average 5 clusters per year. The known Legionnaires' disease outbreaks in 1999 and 2006 were detected as LRI-clusters, since cluster-signals were generated with an increased proportion of Legionnaires disease patients (p:<0.0001). 21 other clusters coincided with local influenza and/or respiratory syncytial virus activity, and 1 cluster appeared to be a data artifact. For 11 clusters no likely cause was defined, some possibly representing as yet undetected LRI-outbreaks. With restrictions on time and spatial windows the scan statistic still detected the Legionnaires' disease outbreaks, without loss of timeliness and with less signals generated in time (up to 42% decline).ConclusionsTo our knowledge this is the first study that systematically evaluates the performance of space-time syndromic surveillance with nationwide high coverage data over a longer period. The results show that syndromic surveillance can detect local LRI-outbreaks in a timely manner, independent of laboratory-based outbreak detection. Furthermore, since comparatively few new clusters per year were observed that would prompt investigation, syndromic hospital-surveillance could be a valuable tool for detection of local LRI-outbreaks.
Highlights
The SARS epidemic in 2003, the bioterrorism attacks in 2001, and the ongoing threat of new infectious disease outbreaks have prompted many countries to invest in their capacity to respond timely to emerging infectious disease outbreaks, as early outbreakdetection may well mitigate their impact
To our knowledge this is the first study that systematically evaluates the performance of space-time syndromic surveillance with nationwide high coverage data over a longer period
The results show that syndromic surveillance can detect local lowerrespiratory infections (LRIs)-outbreaks in a timely manner, independent of laboratory-based outbreak detection
Summary
The SARS epidemic in 2003, the bioterrorism attacks in 2001, and the ongoing threat of new infectious disease outbreaks have prompted many countries to invest in their capacity to respond timely to emerging infectious disease outbreaks, as early outbreakdetection may well mitigate their impact. New surveillance systems for earlier detection have been implemented, often labeled ‘‘syndromic surveillance’’ [1–6]. These systems use increased reporting of critical symptoms or clinical diagnoses as early indicators of infectious disease outbreaks. This allows monitoring of clinical syndromes before laboratory diagnoses have been made, and allows detection of outbreaks of diseases for which no diagnostics were requested or available (including emerging pathogens). Geographic analysis methods – such as space-time scan statistics – may further increase the sensitivity of syndromic surveillance for detection of local outbreaks or of regional differences in regular seasonal epidemic diseases [2,6]. We evaluated whether syndromic surveillance detects local outbreaks of lowerrespiratory infections (LRIs) without swamping true signals by false alarms
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.