Abstract
The paper presents a curving adaptive cruise control (ACC) system that is coordinated with a direct yaw-moment control (DYC) system and gives consideration to both longitudinal car-following capability and lateral stability on curved roads. A model including vehicle longitudinal and lateral dynamics is built first, which is as discrete as the predictive model of the system controller. Then, a cost function is determined to reflect the contradictions between vehicle longitudinal and lateral dynamics. Meanwhile, some I/O constraints are formulated with a driver permissible longitudinal car-following range and the road adhesion condition. After that, desired longitudinal acceleration and desired yaw moment are obtained by a linear matrix inequality based robust constrained state feedback method. Finally, driver-in-the-loop tests on a driving simulator are conducted and the results show that the developed control system provides significant benefits in weakening the impact of DYC on ACC longitudinal car-following capability while also improving lateral stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.