Abstract

This study presents the cure kinetics and cure modelling of an ambient curing unsaturated polyester (UP) resin system for its cure simulation in the vacuum infusion (VI) process. The curing of the UP resin system was investigated using differential scanning calorimetry (DSC). The dynamic DSC test measurements were conducted to find out the ultimate heat of reaction and enable experimental conversion determination for the isothermal curing. The empirical autocatalytic cure kinetics model incorporating the Arrhenius law represented the cure behaviour. The results of the cure kinetics study, the cure model, the material properties and the boundary conditions were the inputs in PAM-RTM software for the simulation of the degree of cure and the exothermic temperature during the infusion and the room temperature curing stages. The simulation results were compared with experimentally measured data. A vacuum infusion (VI) experiment involving a non-crimp glass fibre preform was performed in order to monitor the curing using thermocouples and validate the temperature simulation result. It was shown that the degree of cure and the exothermic temperature of a room temperature curing thermoset resin system during the VI process could be predicted through the steps of this study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call