Abstract

Assembling metallacycles with interesting topological arrangements is a critical task for chemists. We report here a novel dodecanuclear CuII compound, [{Cu3L(µ-N3)}4(Py)14]·2Py (Cu12) (where Py = pyridine and [H6L]Cl = tris(2-hydroxybenzylidine)triaminoguanidinium chloride, respectively), with the topology of a cycle accomplished by four two-connecting approximately flat C3-symmetric guanidine-based ligands. Each ligand affords three tridentate metal-binding cavities and the four node-to-node connections through single azido bridges are provided by pairs of metal centers. A theoretical investigation using CASSCF in addition to DFT calculations showed strong antiferromagnetic coupling within the Cu3-triangles, resulting in spin-frustrated systems. However, these calculations were not able to properly reproduce the very weak antiferromagnetic couplings between the triangle units, highlighting the challenge of describing the magnetic behavior of this compound.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call