Abstract

The kinetic inertness of the hexaaquachromium(III) (kH2O=2.4x10(-6) s(-1)) has led to challenges with respect to incorporating CrIII ions into Prussian blue-type materials; however, hexakis(acetonitrile)chromium(III) was shown to be substantially more labile (approximately 10(4) times) and enables a new synthetic route for the synthesis of these materials via nonaqueous solvents. The synthesis, spectroscopic, and physical properties of Cr[M(CN)6] (M=V, Cr, Mn, Fe) Prussian blue analogues synthesized from [CrIII(NCMe)6]3+ and the corresponding [MIII(CN)6]3- are described. All these compounds {(NEt4)0.02CrIII[VIII(CN)6]0.98(BF4)(0.08).0.10MeCN (1), CrIII[CrIII(CN)6].0.16MeCN (2), CrIII[MnIII(CN)6].0.10MeCN (3), and (NEt4)0.04CrIII0.64CrIV0.40[FeII(CN)6]0.40[FeIII(CN)6]0.60(BF4)(0.16).1.02MeCN (4)} are ferrimagnets exhibiting cluster-glass behavior. Strong antiferromagnetic coupling was observed for M=V, Cr, and Mn with Weiss constants (theta) ranging from -132 to -524 K; and in 2, where the strongest coupling is observed (theta=-524 K), the highest Tc (110 K) value was observed. Weak antiferromagnetic coupling was observed for M=Fe (theta=-12 K) leading to the lowest Tc (3 K) value in this series. Weak coupling and the low Tc value observed in 4 were additionally contributed by the presence of both [FeII(CN)6]4- and [FeIII(CN)6]3- as confirmed by 57Fe-Mössbauer spectroscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.