Abstract

We present a scanning near-field optical microscope designed for nanoscale optical imaging and spectroscopy as well as simultaneous tuning fork shear-force topographic imaging at cryogenic temperatures. The whole setup is immersed in superfluid helium (T=1.8 K). In this medium we observe resonance frequency fluctuations of the tuning fork sensor with an amplitude of Δν≈5%–10% of the full width at half-maximum of the resonance. Possible reasons for the occurrence of the frequency fluctuations are discussed. A stable gapwidth feedback can still be achieved if the set value of the frequency shift is chosen slightly larger than the fluctuation amplitude. As an example we demonstrate shear-force topographic imaging of a silicon grating in superfluid helium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.