Abstract

Electro-optic properties of a cross-linked second order nonlinear optical polymer were reported. This polymer was synthesized via the crosslinking reaction with cross linker Trimethylolmelamine by doping the chromophores into the cellulose diacetate system. The crosslinking temperature is 144°C. The electro-optic coefficient was measured to be 7.12 pm/v at 1550 nm after poling. The stability characteristic of electro-optic effects was studied by a combination of the electro-optic coefficient and dielectric relaxation measurements. Results show that the cross-linked electro-optic polymer system possesses an excellent long-time stability. The average relaxation time is as large as 5880 days and the relaxation was modeled by KWW equation. The dielectric analyses show that the temperature dependence of the relaxation time follows Arrhenius law.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.