Abstract

In this paper, design characteristics of cross slot coupling have been explored and realized in a proposed dual-layer SIW prototype for bandwidth enhancement at 10.0 GHz. The assembled prototype consists of two SMA-microstrip input/output interface with low-loss microstrip-taper via transition and two manually stacked SIW structures electrically connected via a small cross slot coupling design. The proposed dual-layer SIW structure is designed using CST software and fabricated using conventional Printed Circuit Board (PCB) manufacturing process on Rogers 4003 C with = 3.38 and = 0.813 mm. The close agreement between simulated and measured results is observed within a frequency range studied of 9.2 GHz to 11.2 GHz with 19.0 % bandwidth performance. The used of cross slot coupling design in the assembled dual-layer SIW structure indicated 9.0 % bandwidth enhancement compared to the conventional multilayer design with rectangular slot coupling. The assembled dual-layer SIW structure with cross slot coupling design shows potential in several RF applications such as radar and satellite communication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.