Abstract

Context:The factors that govern skeletal responses to physical activity remain poorly understood.Objective:The aim of this study was to investigate whether gender or fat mass influences relationships between cortical bone and physical activity, after partitioning accelerometer outputs into low (0.5–2.1 g), medium (2.1–4.2 g), or high (>4.2 g) impacts, where g represents gravitational force.Design/Setting:We conducted a cross-sectional analysis in participants from the Avon Longitudinal Study of Parents and Children.Participants:We studied 675 adolescents (272 boys; mean age, 17.7 yr).Outcome Measures:We measured cortical bone parameters from peripheral quantitative computed tomography scans of the mid-tibia, adjusted for height, fat mass, and lean mass.Results:High-impact activity was positively associated with periosteal circumference (PC) in males but not females [coefficients (95% confidence intervals), 0.054 (0.007, 0.100) and 0.07 (−0.028, 0.041), respectively; showing sd change per doubling in activity]. There was also weak evidence that medium impacts were positively related to PC in males but not females (P = 0.03 for gender interaction). On stratifying by fat mass, the positive relationship between high-impact activity and PC was greatest in those with the highest fat mass [high impact vs. PC in males, 0.01 (−0.064, 0.085), 0.045 (−0.040, 0.131), 0.098 (0.012, 0.185), for lower, middle, and upper fat tertiles, respectively; high impact vs. PC in females, −0.041 (−0.101, 0.020), −0.028 (−0.077, 0.022), 0.082 (0.015, 0.148), P = 0.01 for fat mass interaction]. Similar findings were observed for strength parameters, cross-sectional moment of inertia, and strength-strain index.Conclusions:In late adolescence, associations between high-impact activity and PC are attenuated by female gender and low body fat, suggesting that the skeletal response to high-impact activity is particularly reduced in young women with low fat mass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.