Abstract

Novel alloys with high aluminium addition have been developed recently for the new concepts of δ-TRIP, δ-QP and some other high-aluminium low-density steels. The aluminium addition dramatically affects the thermodynamics and kinetics of the formation of austenite. In the present study, the effect of aluminium on the initial microstructure of ferrite and pearlite has been investigated. The equilibrium prediction of phase fraction by thermodynamics calculations is in accordance with the measured austenite fraction during isothermal at intercritical temperature range; both results strongly demonstrate a significant influence of aluminium addition on intercritical region. The isothermal transformation of high aluminium steel during intercritical annealing was delayed, which has an instruction for process design of the industrial continuous annealing and galvanization. The austenite formation during heating in intercritical region was also obviously affected by aluminium addition. The transformation kinetics simulation conducted by DICTRA simulation, as well as the experimental results of dilatometry, indicate a delayed austenite transformation during heating process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call