Abstract

Summary The modified Bernoulli equation is examined through a series of two-dimensional simulations of long rods penetrating semi-infinite targets. These are copper, aluminium and tungsten alloy rods having zero strength with length-to-diameter ratios of 20. The targets are steel and tungsten alloy with yield strengths in the range of 0–2 GPa. Impact velocities were varied between 1 and 7 km/s. Each simulation results in a definite value for the steady-state penetration velocity, which is substituted in the modified Bernoulli equation to derive an effective resistance to penetration (Rt). The dependence of Rt on target yield strength, impact velocity and projectile and target characteristics is determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call