Abstract

Dynamic brittle fracture and shear banding are two typical failure modes of metals, and the transformation of the brittle-ductile failure mode has been observed in the Kalthoff test. This paper establishes a thermo-elastic-plastic coupled three-dimensional phase field model to simulate brittle-ductile failure mode transition of metals. The expression for the variation of the Taylor-Quinney coefficient with stress triaxiality is adopted, and the critical energy release rate is automatically adjusted using the Taylor-Quinney coefficient. Then, the Kalthoff test is simulated using the proposed model. The brittle-ductile failure mode transformation phenomenon is reproduced, which agrees well with the experimental results. It can be well proved that impact velocity is crucial in determining the transition to failure mode. At low-velocity impact, the energy is insufficient to drive the plastic accumulation of the shear band, resulting in brittle tensile fracture. At high-velocity impact, the energy is sufficient to drive the formation of adiabatic shear bands, resulting in tensile shear failure. In addition, three-dimensional simulations show that the tip of the shear band exhibits a crescent-shaped non-two-dimensional extension state under finite thickness. This numerical framework provides a predictive tool to understand the evolution of the dynamic failure of metals under impact loading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.