Abstract

Abstract This study examines the validity and limitations associated with retrieval of cloud optical depth τ and effective droplet size re in the Arctic from Advanced Very High Resolution Radiometer (AVHRR) channels 2 (0.725–1.10 μm), 3 (3.55–3.93 μm), and 4 (10.3–11.3 μm). The error in re is found to be normally less than 10%, but the uncertainty in τ can be more than 50% for a 10% uncertainty in the satellite-measured radiance. Model simulations show that the satellite-retrieved cloud optical depth τsat is overestimated by up to 20% if the vertical cloud inhomogeneity is ignored and is underestimated by more than 50% if overlap of cirrus and liquid water clouds is ignored. Under partially cloudy conditions, τsat is larger than that derived from surface-measured downward solar irradiance (τsurf) by 40%–130%, depending on cloud-cover fraction. Here, τsat derived from NOAA-14 AVHRR data agrees well with τsurf derived from surface measurements of solar irradiance at the Surface Heat Budget of the Arctic Oce...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.