Abstract

The aim of this review is to stimulate readers to undertake appropriate investigations of the mechanism for a possible oxygen effect in FLASH. FLASH is a method of delivery of radiation that empirically, in animal models, appears to decrease the impact of radiation on normal tissues while retaining full effect on tumors. This has the potential for achieving a significantly increased effectiveness of radiation therapy. The mechanism is not known but, especially in view of the prominent role that oxygen has in the effects of radiation, investigations of mechanisms of FLASH have often focused on impacts of FLASH on oxygen levels. We and others have previously shown that simple differential depletion of oxygen directly changing the response to radiation is not a likely mechanism. In this review we consider how time-varying changes in oxygen levels could account for the FLASH effect by changing oxygen-dependent signaling in cells. While the methods of delivering FLASH are still evolving, current approaches for FLASH can differ from conventional irradiation in several ways that can impact the pattern of oxygen consumption: the rate of delivery of the radiation (40Gy/s vs. 0.1Gy/s), the time over which each fraction is delivered (e.g., <0.5s. vs. 300s), the delivery in pulses, the number of fractions, the size of the fractions, and the total duration of treatment. Taking these differences into account and recognizing that cell signaling is an intrinsic component of the need for cells to maintain steady-state conditions and, therefore, is activated by small changes in the environment, we delineate the potential time dependent changes in oxygen consumption and overview the cell signaling pathways whose differential activation by FLASH could account for the observed biological effects of FLASH. We speculate that the most likely pathways are those involved in repair of damaged DNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.