Abstract
We consider the applicability (or terminating condition) of the well-known Zeilberger's algorithm and give the complete solution to this problem for the case where the original hypergeometric term F( n, k) is a rational function. We specify a class of identities ∑ k=0 nF(n,k)=0,F(n,k)∈ C(n,k) , that cannot be proven by Zeilberger's algorithm. Additionally, we give examples showing that the set of hypergeometric terms on which Zeilberger's algorithm terminates is a proper subset of the set of all hypergeometric terms, but a super-set of the set of proper terms. Résumé Nous considérons l'applicabilité (ou la condition de terminaison) du célèbre algorithme de Zeilberger et nous donnons la solution complète de ce problème dans le cas où le terme hypergéométrique initial F( n, k) est une fonction rationnelle. Nous indiquons une classe d'identités ∑ k=0 nF(n,k)=0,F(n,k)∈ C(n,k) , qui ne peuvent être démontrées par l'algorithme de Zeilberger. De plus, nous donnons des exemples qui prouvent que l'ensemble des termes hypergéométriques pour lesquels l'algorithme de Zeilberger se termine est un sous-ensemble propre de l'ensemble de tous les termes hypergéométriques mais un super-ensemble de l'ensemble des termes propres.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have