Abstract
The black ghost knifefish is considered to possess central pattern generators (CPGs), which generates rhythms in neural circuits, coordinating the deformation of its elongated fin to achieve efficient and agile locomotion. Current biomimetic robots imitating the locomotion of the black ghost knifefish and using an undulating propulsion control method face significant challenges in adapting their swimming gaits to different environments and tasks. To overcome this limitation, this study conducted biomimetic robot research that extended from morphology to neurobiology and mimicked the CPG to construct a unified framework based on coupled Hopf oscillators. Meanwhile, an amplitude mapping function and a novel coupling method for the CPG-based control framework are proposed. The advantages of the proposed control framework are the ability to modulate different control parameters and replicate different swimming gaits, including forward, hovering, and backward swimming, realising seamless gait transitions. The control framework was tested on a specially designed undulating fin platform to evaluate the propulsion performance by modulating the control parameters, including amplitude, frequency, and phase difference. The experimental results demonstrate that the proposed CPG-based control framework achieves multimodal locomotion, enabling rapid and smooth transitions between swimming gaits, thus enhancing the robot's adaptability and stability in variable swimming environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.