Abstract

We show that for a large class of one-dimensional interacting particle systems, with a finite initial configuration, any limit measure , for a sequence of times tending to infinity, must be invariant. This result is used to show that the one-dimensional biased annihilating branching process with parameter > 1/3 converges in distribution to the upper invariant measure provided its initial configuration is almost surely finite and non-null.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.