Abstract
We consider finite and infinite systems of particles on the real line and half-line evolving in continuous time. Hereby, the particles are driven by i.i.d. Lévy processes endowed with rank-dependent drift and diffusion coefficients. In the finite systems we show that the processes of gaps in the respective particle configurations possess unique invariant distributions and prove the convergence of the gap processes to the latter in the total variation distance, assuming a bound on the jumps of the Lévy processes. In the infinite case we show that the gap process of the particle system on the half-line is tight for appropriate initial conditions and same drift and diffusion coefficients for all particles. Applications of such processes include the modeling of capital distributions among the ranked participants in a financial market, the stability of certain stochastic queueing and storage networks and the study of the Sherrington–Kirkpatrick model of spin glasses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.