Abstract
This paper addresses the modeling of strains and forces generated by magnetostrictive transducers in response to applied magnetic fields. The magnetostrictive effect is modeled by considering both the rotation of magnetic moments in response to the field and the elastic vibrations in the transducer. The former is modeled with the Jiles-Atherton model of ferromagnetic hysteresis in combination with a quartic magnetostriction law. The latter is modeled through force balancing which yields a PDE system with magnetostrictive inputs and boundary conditions given by the specific transducer design. The solution to this system provides both rod displacements and forces. The calculated forces are used to quantify the magnetomechanical effect in the transducer core, i.e., the stress-induced magnetization changes. This is done by considering a “law of approach” to the anhysteretic magnetization. The resulting model provides a representation of the bidirectional coupling between the magnetic and elastic states. It is demonstrated that the model accurately characterizes the magnetic hysteresis in the material, as well as the strains and forces output by the transducer under conditions typical of engineering applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Intelligent Material Systems and Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.