Abstract

One of the major concerns in ensuring lithium-ion battery (LIB) safety in abuse scenarios is the structural integrity of the battery separator. This paper presents a coupled viscoelastic–viscoplastic model for predicting the thermomechanical response of polymeric battery separators in abuse scenarios under combined mechanical and thermal loadings. The viscoplastic model is developed based on a rheological framework that considers the mechanisms involved in the initial yielding, change in viscosity, strain softening and strain hardening of polymeric separators. The viscoplastic model is then coupled with a previously developed orthotropic nonlinear thermoviscoelastic model to predict the thermomechanical response of polymeric separators before the onset of failure. The model parameters are determined for Celgard®2400, a polypropylene (PP) separator, and the model is implemented in the LS-DYNA® finite element (FE) package as a user-defined subroutine. Punch test simulations are employed to verify the model predictions under biaxial stress states. Simulations of uniaxial tensile stress–strain responses at different strain rates and temperatures are compared with experimental data to validate the model predictions. The model predictions of the material anisotropy, rate and temperature dependence agree well with experimental observations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call