Abstract

Lithium battery separators play a critical role in the performance and safety of lithium batteries. In this work, four kinds of polymer particle adhesives (G1–G4) for lithium battery separators were synthesized via dispersion polymerization, using styrene, butyl acrylate and acrylonitrile as monomers. The particle size/size distributions, particle morphologies and glass transition temperatures (Tg) of polymer particle adhesives were explored using laser particle size analysis, scanning electron microscopy (SEM) and differential scanning calorimetry (DSC), respectively. The adhesion strengths between the battery separators and the poles piece were examined using a tensile machine. The prepared polymer particle adhesive with a uniform distribution of particle size was obtained when the mass ratio of ethanol to water reached 85:15. Compared with the other three polymer particle adhesives, the prepared G3 coated on the surface of the battery separator exhibited a stronger adhesion with the battery pole piece. In addition, the Land battery test system was applied to examine the electrochemical performance of the lithium battery assembled with the battery separator with the prepared polymer particle adhesives. The results suggest that the electrochemical performance of the lithium battery assembled with the battery separator with polymer particle adhesive G3 is the best among the four counterparts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call