Abstract

Dynamic analysis of a pile embedded in a half-space soil covered by a water layer is crucial for the designs of the pile foundations for bridges, docks and offshore platforms etc. In this paper, a coupled boundary element method (BEM) model is developed to evaluate the dynamic response of the pile. In the proposed model, the pile and half-space soil are treated as elastic media, while the water layer is considered as an acoustic medium. Three BEM formulations are established for the pile, half-space soil and water layer by means of the boundary element method (BEM), respectively. Using the three BEM formulations as well as the continuity conditions at the interfaces between three regions, a coupled BEM model for the pile-soil-water system is established. To validate the proposed model, results due to our model are compared with existing results. With the coupled BEM model for the pile-soil-water system, dynamic response of the pile is investigated. Presented numerical results show that when the pile is subjected to an axial load and torque, resonance phenomena is not obvious. However, when the pile is subjected to a horizontal load and moment, resonance phenomena is pronounced and the pile-soil modulus and density ratios have a considerable influences on resonant frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.