Abstract

The boundary element method (BEM) and the finite element method (FEM) may be computationally expensive if complex problems are to be solved; thus there is the need of implementing them on fast computer architectures, especially parallel computers. Because these methods are complementary to each other, the coupling of FEM and BEM is widely used. In this paper, the coupling of displacement‐based FEM and collocation BEM and its implementation on a distributed memory system (Parsytec MultiCluster2) is described. The parallelization is performed by data partitioning which leads to a very high efficiency. As model problems, we assume linear elasticity for the boundary element method and elastoplasticity for the finite element method. The efficiency of our implementation is shown by various test examples. By numerical examples we show that a multiplicative Schwarz method for coupling BEM with FEM is very well suited for parallel implementation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.