Abstract

Abstract Decision-making in finance often requires an accurate estimate of the coskewness matrix to optimize the allocation to random variables with asymmetric distributions. The classical sample estimator of the coskewness matrix performs poorly for small sample sizes. A solution is to use shrinkage estimators, defined as the convex combination between the sample coskewness matrix and a target matrix. We propose unbiased consistent estimators for the MSE loss function and include the possibility of having multiple target matrices. In a portfolio application, we find that the proposed shrinkage coskewness estimators are useful in mean–variance–skewness efficient portfolio allocation of funds of hedge funds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.