Abstract

This paper proposes an analytical method to improve the accuracy of the dynamic response of classically damped linear systems, as given by a standard truncated modal analysis. Upon computing the first m undamped modes of a n-degree-of-freedom system, two sets of equations in the R n nodal space are built, which are uncoupled and govern the contribution to the response of the m computed modes and the remaining ( n− m) unknown modes, respectively. The first set is solved in the R m modal space by using the m available modes; the second set is solved in a reduced R ( n− m) nodal space, without computing additional modes. Specifically, it is shown that the particular solution of the second set of equations may be obtained by a series expansion involving repetitive time derivatives of the first-order static solution. The convergence conditions of such a series are discussed and proved on a rigorous basis. Numerical applications are also presented to demonstrate the effectiveness of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call