Abstract

The objective of the mock circulatory system (MCS) is to construct the characteristics of cardiovascular hemodynamics. Westerhof 's resistor that often regarded as the laminar flow resistance in the MCS, is commonly used to simulate the peripheral resistance of the cardiovascular system. However, the theoretical calculation value of fluid resistance of the Westerhof 's resistor shows distinguished difference with the actual needed value. If the theoretical resistance is regarded as the actual needed one and be used directly in the experiment, the experimental accuracy would not be acceptable. In order to improve the accuracy, an effective correction method for calculating the resistance of Westerhof 's resistor was proposed in this paper. Simulation software was also developed to compute accurately the capillary number, total length and resistance. The results demonstrate the proposed method is able to reduce the difficulty and complexity of the design of the resistor, which would obviously increase the manufactured precision of the Westerhof 's resistor. Simulation software would provide great support to the construction of various MCSs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.