Abstract

Repair of dissected aorta requires remodeling the structure of the media. Modeling approaches specific to endovascular stenting for aortic dissection have been reported. We created a goat model of descending thoracic aortic dissection and reproduced its morphological characteristics in a mock circulatory system. The purpose of this study was to examine a newly developed aortic stent which was capable of installing to the aortic dissected lesion for biomedical hemodynamics point of view. In this study, we examined the changes in hemodynamics of dissected lesions and the amelioration by endovascular stent intervention. Firstly, we performed animal experiments with the dissected aorta and examined the effects of stenting on volumetric changes in the false lumen. Secondly, we made several types of 3-D stereolithographic dissected aortic models with silicone rubber membrane between the false and the true lumens. Then, the hemodynamic characteristics in each model were evaluated in the pulsatile flow conditions in a mock circulatory system. These modelling approaches enabled the quantitative examination of post-therapeutic effects of stenting followed by elucidating of hemodynamic changes in the vicinity of stents, which may follow the management of clinical amelioration of interventional treatment with aortic stenting.Clinical Relevance- This study represents a modelling approach of the dissected aorta for endovascular intervention using stenting followed by the examination of false lumen volumetric changes resulting in the deterioration of pressure increase in diseased lesions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call