Abstract
Future high-contrast imaging spectroscopy with a large segmented telescope will be able to detect atmospheric molecules of Earth-like planets around G- or K-type main-sequence stars. Increasing the number of target planets will require a coronagraph with a small inner working angle (IWA), and wide spectral bandwidth is required if we enhance a variety of detectable atmospheric molecules. To satisfy these requirements, in this paper, we present a coronagraphic system that provides an IWA less than 1λ 0/D over a moderate wavelength band, where λ 0 is the design-center wavelength and D denotes the full width of the rectangular aperture included in the telescope aperture. A performance simulation shows that the proposed system approximately achieves a contrast below 10−10 at 1λ 0/D over the wavelengths of 650–750 nm. In addition, this system has a core throughput ≥10% at input separation angles of ∼0.7–1.4λ 0/D; to reduce telescope time, we need prior information on the target’s orbit by other observational methods to a precision higher than the width of the field of view. For some types of aberration including tilt aberration, the proposed system has a sensitivity less than ever-proposed coronagraphs that have IWAs of approximately 1λ 0/D. In future observations of Earth-like planets, the proposed coronagraphic system may serve as a supplementary coronagraphic system dedicated to achieving an extremely small IWA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.