Abstract

The direct CO2 Fischer–Tropsch synthesis (CO2-FTS) process has been proven as one of the indispensable and effective routes in CO2 utilization and transformation. Herein, we present a core-shell structured Na/Fe@Co bimetallic catalyst to boost CO2 conversion and light hydrocarbon (C2 to C4) selectivity, as well as inhibit the selectivity of CO. Compared to the Na/Fe catalyst, our Na/Fe@CoCo-3 catalyst enabled 50.3% CO2 conversion, 40.1% selectivity of light hydrocarbons (C2-C4) in all hydrocarbon products and a high olefin-to-paraffin ratio (O/P) of 7.5 at 330 °C and 3.0 MPa. Through the characterization analyses, the introduction of CoCo Prussian Blue Analog (CoCo PBA) not only increased the reducibility of iron oxide (Fe2O3 to Fe3O4), accelerated the formation of iron carbide (FexCy), but also adjusted the surface basic properties of catalysts. Moreover, the trace Co atoms acted as a second active center in the CO2-FTS process for heightening light hydrocarbon synthesis from CO hydrogenation. This work provides a novel core-shell structured bimetallistic catalyst system for light hydrocarbons, especially light olefin production from CO2 hydrogenation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.