Abstract
Recently we showed that an expressive class of mathematical equations can be automatically translated into simulation codes. By focusing on the expressivity of equations formed from continuous functions, this work did not accommodate a wide range of discrete behaviors or a dynamic collection of components. However, the interaction between continuous and hybrid components in many cyber-physical domains is highly coupled, and such systems are often highly dynamic in both respects. This paper gives an overview of a proposed core language for capturing executable hybrid models of highly dynamic cyber-physical systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.