Abstract

Water electrolysis is among the simplest methods to generate hydrogen, which can be used as a clean and renewable energy source. Within this process, the oxidation of water into molecular oxygen is considered as the bottleneck reaction because it involves the transfer of four electrons toward the oxidation of a highly stable small molecule. Challenges in this area include the development of stable and effective electro- and photocatalysts that utilize readily available metal ions. Herein we report a copper–peptidomimetic complex as an electrocatalyst for water oxidation, which is both highly stable and efficient. Inspired by enzymatic catalysis, which is largely based on intramolecular cooperativity between a metal center and functional organic molecules located on one scaffold, we have designed and synthesized a peptoid trimer bearing a 2,2′-bipyridine (bipy) ligand, an −OH group, and a benzyl group. Both experimental and computational data reveal that binding of CuII to this peptoid in aqueous medium oc...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call