Abstract

A copper-lined (CL) primary coil, which is a composite of steel and copper, was devised for the electromagnetic flux compression technique to generate ultrahigh magnetic fields. The newly developed coil was found to be highly efficient for electromagnetic energy transfer and provided stabilization of the liner implosive motion with less influence from the current feeding gap. Dynamical current density distribution of the materials used in a primary coil was evaluated and applied to the design of the CL coil. Fields of up to 730 T were achieved by employing the CL coil with an energy injected from a 4 MJ condenser bank. This value is the highest achieved thus far in an indoor setting. The peak magnetic fields were found to depend significantly on the initial seed magnetic field. The optimum seed fields for obtaining the highest peak magnetic field were determined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call