Abstract

The electromagnetic congestion due to the continuous growth of spectral demand has been skyrocketing for the past years. Joint radar-communication systems are, thus, attracting attention as they can alleviate spectrum occupancy by using the same bandwidth to perform both applications. In this context, a cooperative radar-communication system, which is a specific category that uses communication codes to both transmit information and perform radar missions, can be considered. Continuous phase-modulated (CPM) codes are considered in this article in order to generate high-resolution radar images from airborne radar. Since mitigating the sidelobe level energy is essential for good image quality, we resort here to optimized mismatched filters (MMFs). A fast algorithm is proposed to minimize the computational time of these filters. Simulated data are generated, as well as resynthesized synthetic aperture radar (SAR) images, and reconstructed from real chirp-based data using CPM codes and MMFs. Their performance is evaluated using different comparison tools and shows that the use of mismatched filtering and different messages embedded in the phase of each transmitted code provides enhanced image quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.