Abstract
With the increasing demand of Machine to Machine (M2M) communications and Internet of Things (IoT) services it is necessary to develop a new network architecture and protocols to support cost effective, distributed computing systems. Generally, M2M and IoT applications serve a large number of intelligent devices, such as sensors and actuators, which are distributed over large geographical areas. To deploy M2M communication and IoT sensor nodes in a cost-effective manner over a large geographical area, it is necessary to develop a new network architecture that is cost effective, as well as energy efficient. This paper presents an IEEE 802.11 and IEEE 802.15.4 standards-based heterogeneous network architecture to support M2M communication services over a wide geographical area. For the proposed heterogeneous network, we developed a new cooperative Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) medium access control (MAC) protocol to transmit packets using a shared channel in the 2.4 GHz ISM band. One of the key problems of the IEEE 802.11/802.15.4 heterogeneous network in a dense networking environment is the coexistence problem in which the two protocols interfere with each other causing performance degradation. This paper introduces a cooperative MAC protocol that utilizes a new signaling technique known as the Blank Burst (BB) to avoid the coexistence problem. The proposed MAC protocol improves the network QoS of M2M area networks. The developed network architecture offers significant energy efficiency, and operational expenditure (OPEX) and capital expenditure (CAPEX) advantages over 3G/4G cellular standards-based wide area networks.
Highlights
With the rapid expansion of Machine to Machine (M2M) communication and Internet of Things (IoT) applications in different domains, such as smart city, smart grid, healthcare, and environmental monitoring, the need for the development of low-cost, energy-efficient reliable area network architectures is increasing [1]
Communication service requirements for the M2M/IoT applications are different compared to traditional data networks
IoT is one of the distributed computing areas where a large number of applications are appearing in different domains, such as smart city, smart grid, e-health, vehicular communications, etc. [7,8]
Summary
With the rapid expansion of Machine to Machine (M2M) communication and Internet of Things (IoT) applications in different domains, such as smart city, smart grid, healthcare, and environmental monitoring, the need for the development of low-cost, energy-efficient reliable area network architectures is increasing [1]. Traditional cellular wide area networks could be used to support such applications which generally have higher capital expenditure (CAPEX) and operational expenditure (OPEX) costs Another approach could be to use unlicensed band short range wireless networks where multi-hop or mesh wireless network architecture can be used to cover large geographical areas. Traditional cellular networks, such as 3G/4G-based standards may not efficiently support all of the needs of IoT applications due to high signaling requirements, infrastructure, and energy costs [4]. The main contribution of this paper is a new low-cost heterogeneous network architecture that can support IoT data transmission needs in a wide area with the necessary QoS requirements.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have