Abstract

The Hough transform is a well-established family of algorithms for locating and describing geometric figures in an image. However, the computational complexity of the algorithm used to calculate the transform is high when used to target complex objects. As a result, the use of the Hough transform to find objects more complex than lines is uncommon in real-time applications. We describe a convolution method for calculating the Hough transform for finding circles of arbitrary radius. The algorithm operates by performing a three-dimensional convolution of the input image with an appropriate Hough kernel. The use of the fast Fourier transform to calculate the convolution results in a Hough transform algorithm with reduced computational complexity and thus increased speed. Edge detection and other convolution-based image processing operations can be incorporated as part of the transform, which removes the need to perform them with a separate pre-processing or post-processing step. As the Discrete Fourier Transform implements circular convolution rather than linear convolution, consideration must be given to padding the input image before forming the Hough transform.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.