Abstract
We obtain a scalar inequality, converse to the Jensen inequality. We also derive an operator converse to the Jensen inequality. As special cases, we obtain inequalities, similar to the Kantorovich one as well as some operator generalizations of them. Using some exterior algebra, we prove a generalization of the Sylvester determinant theorem. We also deduce some determinant analogs of the additive and multiplicative Kantorovich inequalities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.