Abstract
We introduce an idempotent analogue of the exterior algebra for which the theory of tropical linear spaces (and valuated matroids) can be seen in close analogy with the classical Grassmann algebra formalism for linear spaces. The top wedge power of a tropical linear space is its Plucker vector, which we view as a tensor, and a tropical linear space is recovered from its Plucker vector as the kernel of the corresponding wedge multiplication map. We prove that an arbitrary d-tensor satisfies the tropical Plucker relations (valuated exchange axiom) if and only if the dth wedge power of the kernel of wedge-multiplication is free of rank one. This provides a new cryptomorphism for valuated matroids, including ordinary matroids as a special case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.