Abstract
In this paper, we prove convergence and quasi-optimal complexity of a simple adaptive nonconforming finite element method. In each step of the algorithm, the iterative solution of the discrete system is controlled by an adaptive stopping criterion, and the local refinement is based on either a simple edge residual or a volume term, depending on an adaptive marking strategy. We prove that this marking strategy guarantees a strict reduction of the error, augmented by the volume term and an additional oscillation term, and quasi-optimal complexity of the generated sequence of meshes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.