Abstract

Recently an adaptive nonconforming finite element method (ANFEM) has been developed by Carstensen and Hoppe (in Numer Math 103:251–266, 2006). In this paper, we extend the result to some nonsymmetric and indefinite problems. The main tools in our analysis are a posteriori error estimators and a quasi-orthogonality property. In this case, we need to overcome two main difficulties: one stems from the nonconformity of the finite element space, the other is how to handle the effect of a nonsymmetric and indefinite bilinear form. An appropriate adaptive nonconforming finite element method featuring a marking strategy based on the comparison of the a posteriori error estimator and a volume term is proposed for the lowest order Crouzeix–Raviart element. It is shown that the ANFEM is a contraction for the sum of the energy error and a scaled volume term between two consecutive adaptive loops. Moreover, quasi-optimality in the sense of quasi-optimal algorithmic complexity can be shown for the ANFEM. The results of numerical experiments confirm the theoretical findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.