Abstract
Different sound transmission loss (STL) analytical methods based on Love's, Donnell's and Flügge's cylindrical thin-shell theories have been widely used. However, there are no available convergence criterion and formulas of sound transmission losses for multi-layer cylindrical shell structures. The current convergence determination approach is to select several typical frequencies (low, middle, and high frequencies) for convergence analysis, and then estimate the convergence of all other frequencies. This typically results in sound transmission loss jumps, leading to inaccurate sound transmission loss results in the high-frequency region. In this study, a novel convergence criterion and formulas are developed for calculating sound transmission loss mode numbers in the complete convergence zones of single-, double-, and triple-walled cylindrical shells based on Love's, Donnell's, and Flügge's thin shell theories, which can be used to directly determine the truncation iterations for sound transmission losses in all frequency ranges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.