Abstract

We provide a local as well as a semilocal convergence analysis for two-point Newton- like methods in a Banach space setting under very relaxed conditions. Our equation contains a Frechet differentiable operator F and another operator G whose differentiability is not assumed. Using more precise majorizing sequences than before we provide sufficient convergence conditions for Newton-like methods to a locally unique solution of equation F(x)+G(x) = 0. In the semilocal case we show under weaker conditions that our estimates on the distances involved are finer and the information on the location of the solution at least as precise as in earlier results. In the local case a larger radius of convergence is obtained. Several numerical examples are provided to show that our results compare favorably with earlier ones. As a special case we show that the famous Newton–Kantorovich hypothesis is weakened under the same hypotheses as the ones contained in the Newton–Kantorovich theorem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.