Abstract

Sugar 1,2-orthoesters are by-products of chemical glycosylation reactions that can be subsequently rearranged in situ to give trans glycosides. They have been used as donors in the synthesis of the latter glycosides with good regio- and stereo-selectivity. Alkyl α-(1 → 2) linked mannopyranosyl disaccharides have been reported as the major products from the rearrangement of mannopyranosyl orthoesters. Recent studies in this laboratory have shown that α-(1 → 2) linked mannopyranosyl di-, tri- and tetrasaccharides can be obtained in one step from mannopyranosyl allyl orthoester under optimized reaction conditions. In addition to the expected mono- and disaccharides (56%), allyl 2,3,4,6-tetra-O-acetyl-α-d-mannopyranosyl-(1 → 2)-3,4,6-tri-O-acetyl-α-d-mannopyranosyl-(1 → 2)-tri-O-acetyl-α-d-mannopyranoside and allyl 2,3,4,6-tetra-O-acetyl-α-d-mannopyranosyl-(1 → 2)-3,4,6-tri-O-acetyl-α-d-mannopyranosyl-(1 → 2)-3,4,6-tri-O-acetyl-α-d-mannopyranosyl-(1 → 2)-3,4,6-tri-O-acetyl-α-d-mannopyranoside were obtained in 23% and 6% isolated yields, respectively, from the oligomerization of a β-d-mannopyranosyl allyl 1,2-orthoester, along with small amounts of higher DP oligomers. Possible mechanisms for the oligomerization and side reactions are proposed based on NMR and mass spectrometric data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.