Abstract

A novel inverter control strategy to enhance the transient stability of grid-connected wind farm based on doubly-fed induction generator (DFIG) is presented. Adding transient angle control strategy in the rotor side converter active control loop, this can dissipate the system unbalancing energy and restrain the system oscillations by the variation of wind turbine speed. Adding transient voltage control strategy in reactive control loop, this can provide fast reactive power compensation and support the restoration and reconstruction of the grid voltage when fault occurred. The control strategy which can improve the transient Angle stability and transient voltage stability at the same time is put forward. Finally, a testing system including a DFIG-based wind farm is realized using DigSILENT/Power Factory, the strategy validation and the contribution to power system stability enhancement are verified by simulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.