Abstract

In wind tunnel experiments, in order to adjust the attack angle continuously, the support mechanism movement should be steady and smooth. However, the electro-hydraulic servo system is a typical nonlinear, time-varying and uncertainty system, and the wind tunnel environment is very complicated. To address these problems, an on-line identification and generalized predictive control (GPC) strategy is proposed in this study. Firstly, the Labview and AMESim are integrated to build an electro-hydraulic system simulation model. Secondly, the controlled auto-regressive moving average (CARIMA) model of the electro-hydraulic system is developed. Thirdly, the influence on the system performance owing to the control parameters, model parameters, and external disturbance are widely discussed and deeply analyzed. At last, a test platform is constructed with the National Instruments (NI) embedded real time technology. The proposed control strategy is tested and verified on this test platform. The experimental results show that the angular velocity control precision reaches 0.01°/s. It implies that this control strategy has a good performance for nonlinear velocity control. Thus it satisfies the requirement of the continuously adjusting attack angle in wind tunnel experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call