Abstract

In this paper a combined experimental and computational study was carried out in order to assess the ability of a homogeneous equilibrium model in predicting the experimental behaviour observed from the hydraulical characterization of a nozzle. The nozzle used was a six-orifice microsac nozzle, with cylindrical holes, and therefore inclined to cavitate. The experimental results available for the validation purpose comprised measurements of mass flow rate and spray momentum flux, which correctly combined provide also fundamental information such as discharge coefficient, nozzle exit effective velocity and area contraction. The model was proved to be able of reproducing the experimental results with high degree of confidence and, through the exploration of the internal flow, allowed the explanation of widely reported experimental findings related to cavitation phenomena: the mass flow choking induced by cavitation and the increment of effective injection velocity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.