Abstract

Continuum robot, unlike conventional rigid-link robots, has numerous numbers of degrees of freedom, enabling it to be applied for confined space works, such as minimally invasive surgery, safe robot/objective interactions, and in-situ aero-engine detection. This study presented a cable-driven continuum robot with twin-pivot structure, which poses smaller diameter-length-ratio and torsion resistance ability compared with conventional single-pivot structure, as well as the kinematics and shape estimation. The kinematics model of the twin-pivot continuum robot is established based on the assumption of piecewise constant curvature, with which the mapping between driving space and operation space are presented. Finally, a prototype of continuum robot system with single section is constructed to verify the validation of the kinematics model and study the shape estimation. Based on the constructed prototype, the shape estimation of the continuum robot with different payloads is performed. The comparative results suggest that relative error is less than 5% for total length of the single section without payload, verifying the validity of the kinematics model. The comparison between the results with different payloads indicate that the increasing payload will increase the relative error.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call