Abstract

Models of continuum robots often trade off accuracy and speed. The constant curvature assumption model can perform fast calculations but with poor accuracy. Static models can obtain good calculation accuracy but with slower computation speed. In this paper, a precise and efficient method for establishing a non-constant curvature kinematic model for composite continuum robots is proposed. First, an algorithm based on the Beam Constraint Model is proposed to establish the static model of the continuum robot. The situation in which friction changes gradually in continuum robots is considered in the static model. Then, the Kepler elliptic curve is used to simplify the static model to build a non-constant curvature kinematic model of the continuum robot. Then, complex inverse kinematics solutions are transformed into explicit sets of equations by mathematical transformation. Finally, simulations and experiments are designed to demonstrate the algorithm proposed in this paper. The simulation results show that the proposed algorithm is 1572 times faster than the Levenberg–Marquardt algorithm. The experimental results show that the average error of the static model is 0.065 mm, accounting for 0.13% of its length. The maximum error is 0.309 mm, accounting for 0.618% of its length. The positioning accuracy of the non-constant curvature model proposed in this paper is 2.02 times that of the constant curvature model. The results show that the simplified kinematic model algorithm based on the static model has high accuracy and computational efficiency. This research is crucial for the practical application of continuum robots in engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.