Abstract

We propose a new approach for developing continuum models for the mechanical behavior of woven fabrics in planar deformation. We generate a physically motivated continuum model that can both simulate existing fabrics and predict the behavior of novel fabrics based on the properties of the yarns and the weave. The approach relies on the selection of a geometric model for the fabric weave, coupled with constitutive models for the yarn behaviors. The fabric structural configuration is related to the macroscopic deformation through an energy minimization method, and is used to calculate the internal forces carried by the yarn families. The macroscopic stresses are determined from the internal forces using equilibrium arguments. Using this approach, we develop a model for plain weave ballistic fabrics, such as Kevlar®, based on a pin-joined beam geometry. We implement this model into the finite element code ABAQUS and simulate fabrics under different modes of deformation. We present comparisons between model predictions and experimental findings for quasi-static modes of in-plane loading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.