Abstract

AbstractThis paper presents a continuous frequency tuning Fabry–Perot Cavity (FPC) antenna of which the operating frequency can be varied from 4.87 to 5.84 GHz (18.1%). The cavity of the proposed antenna is excited by a double-layer antenna structure, which is made up of a main square patch and a parasitic one. The superstrate is a frequency-selective surface, consisting of 6 × 6 square-patch-type unit cells. The frequency tuning property is realized by employing 48 phase-changing elements placed around the main patch, which forms a reconfigurable high impedance surface (HIS). By controlling the biasing voltages of the varactors inserted in the HIS element, its capacitances and reflection phases can be varied continuously, which leads to a variation of the operating frequency. An antenna prototype has been fabricated and measured for validation. The measured results are in good agreement with the simulated ones. In the frequency tuning range, the measured realized gains have a smaller variation from 10.2 to 14.1 dBi compared with other reported frequency tuning FPC antennas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.